organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lin-Hai Jing,^a Da-Bin Qin,^a Huan-Xia Zhang,^a Shao-Jin Gu^a and Zhi-Hua Mao^b*

^aDepartment of Chemistry, China West Normal University, Nanchong 637002, People's Republic of China, and ^bThe Centre of Testing and Analysis, Sichuan University, Chengdu 610064, People's Republic of China

Correspondence e-mail: jlhhxg@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean σ (C–C) = 0.006 Å R factor = 0.032 wR factor = 0.083 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3,3'-(1,4-Naphthalenedimethylene)bis(1-methylimidazolium) diiodide monohydrate

In the title compound, $C_{20}H_{22}N_4^{2+}\cdot 2I^-\cdot H_2O$, the two imidazolium rings are twisted away from the central naphthalene plane by 76.6 (1) and 74.5 (1)°. The crystal packing is stabilized by $O-H\cdots I$, $C-H\cdots O$ and $C-H\cdots I$ hydrogen bonds.

Received 21 October 2005 Accepted 31 October 2005 Online 5 November 2005

Comment

Numerous flexible or rigid *N*-heterocyclic carbene precursors have been synthesized and studied. They attract considerable attention because of their diverse coordination capabilities and the important catalytic properties of their metal complexes (Herrmann, 2002; Herrmann & Kocher, 1997). We report here the crystal structure of the title compound, (I).

Bond lengths and angles in (I) are normal (Table 1). The naphthalene ring system is planar, with a maximum deviation of 0.022 (4) Å for C9. The dihedral angle between the N1/C12/N2/C13/C14 and C1–C10 planes is 76.6 (1)° and that between the N3/C17/N4/C18/C19 and C1–C10 planes is 74.5 (1)°. The dihedral angle between the two imidazolium rings is 6.6 (4)°. In the crystal structure, the water molecule and iodide ions are involved in $O-H\cdots$ I hydrogen bonds (Fig. 1). In addition, the crystal packing is stabilized by $C-H\cdots$ O and $C-H\cdots$ I hydrogen bonds.

Experimental

Compound (I) was synthesized by the reaction of 1,4-bis-(imidazolymethyl)naphthalene with iodomethane in dichloromethane at room temperature, according to the reported procedure of Baker *et al.* (2001). Yellow single crystals of (I) were obtained by recrystallization from methanol and diethyl ether.

Crystal data $C_{20}H_{22}N_4^{\ 2+}{\cdot}2I^-{\cdot}H_2O$ Z = 2 $M_r = 590.23$ $D_r = 1.758 \text{ Mg m}^{-3}$ Triclinic, $P\overline{1}$ Mo $K\alpha$ radiation a = 8.563 (3) Å Cell parameters from 18 b = 9.572 (3) Å reflections c = 14.684 (6) Å $\theta = 4.4 - 7.4^{\circ}$ $\mu=2.84~\mathrm{mm}^{-1}$ $\alpha = 102.97 (3)^{\circ}$ $\beta = 103.66 (3)^{\circ}$ T = 292 (2) K $\gamma = 98.24 (3)^{\circ}$ Block, yellow 0.25 \times 0.15 \times 0.08 mm V = 1114.9 (7) Å³

O 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Data collection

Enraf–Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.583, T_{max} = 0.797$ 3927 measured reflections 3900 independent reflections 2850 reflections with $I > 2\sigma(I)$

Refinement

Table 1

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.083$ S = 1.003900 reflections 254 parameters $\theta_{\text{max}} = 25.0^{\circ}$ $h = -10 \rightarrow 9$ $k = -2 \rightarrow 11$ $l = -17 \rightarrow 17$ 3 standard reflections every 300 reflections intensity decay: 2.1%

 $R_{int} = 0.016$

H-atom parameters treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.05P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.48 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.51 \text{ e } \text{Å}^{-3}$

Selected geometric parameters (Å, °). N1-C12 1.324 (5) N3-C19 N1-C14 1.381 (6) N3-C16 N1-C11 1.462 (5) N4-C17

N1-C11	1.462 (5)	N4-C17	1.325 (5)
N2-C12	1.313 (5)	N4-C18	1.370 (5)
N2-C13	1.361 (6)	N4-C20	1.468 (6
N2-C15	1.475 (5)	C4-C16	1.510 (6
N3-C17	1.314 (5)		
N1-C11-C1	114.7 (3)	N3-C16-C4	111.6 (3)

Table 2 Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
0.85 (4)	2.76 (4)	3.578 (6)	164 (6)
0.85 (9)	2.87 (9)	3.649 (7)	154 (6)
0.93	2.90	3.799 (5)	162
0.93	2.52	3.327 (8)	145
0.93	2.93	3.830 (4)	163
	<i>D</i> -H 0.85 (4) 0.85 (9) 0.93 0.93 0.93	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.85 (4) & 2.76 (4) \\ 0.85 (9) & 2.87 (9) \\ 0.93 & 2.90 \\ 0.93 & 2.52 \\ 0.93 & 2.93 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x + 1, -y + 1, -z.

The H atoms of the water molecule were located in a difference Fourier map and refined with O–H and H···H distance restraints of 0.84 (1) and 1.37 (2) Å, respectively. All other H atoms were placed in calculated positions [C–H = 0.93–0.97 Å], and included in the final cycles of refinement using a riding-model approximation, with $U_{\rm iso}({\rm H}) = 1.2-1.5U_{\rm eq}$ (carrier atom).

Data collection: *DIFRAC* (Gabe & White, 1993); cell refinement: *DIFRAC*; data reduction: *NRCVAX* (Gabe *et al.*, 1989); program(s)

Figure 1

1.366(5)

1.483 (5)

The structure of (I), showing 30% probability displacement ellipsoids and the atomic numbering. Dashed lines indicate hydrogen bonds.

used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3 for Windows* (Farrugia,1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the Centre for Test and Analysis, Sichuan University, for financial support.

References

- Baker, M. V., Skelton, B. W., White, A. H. & Williams, C. C. (2001). J. Chem. Soc. Dalton Trans. 2, 111–120.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Gabe, E. J. & White, P. S. (1993). *DIFRAC*. American Crystallographic Association, Pittsburgh meeting. Abstract PA104.
- Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.
- Herrmann, W. A. & Kocher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162–2187.
- North, A. C. T., Philips, D. C. & Mathews, F. (1968). Acta Cryst. A24, 351–359. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.