Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lin-Hai Jing, ${ }^{\text {a }}$ Da-Bin Qin, ${ }^{\text {a }}$ Huan-Xia Zhang, ${ }^{\text {a }}$ Shao-Jin Gu ${ }^{\text {a }}$ and Zhi-Hua Mao ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry, China West Normal University, Nanchong 637002, People's Republic of China, and ${ }^{\mathbf{b}}$ The Centre of Testing and Analysis, Sichuan University, Chengdu 610064, People's Republic of China

Correspondence e-mail: jlhhxg@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.032$
$w R$ factor $=0.083$
Data-to-parameter ratio $=15.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3,3'-(1,4-Naphthalenedimethylene)bis(1-methylimidazolium) diiodide monohydrate

In the title compound, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4}{ }^{2+} \cdot 2 \mathrm{I}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, the two imidazolium rings are twisted away from the central naphthalene plane by $76.6(1)$ and $74.5(1)^{\circ}$. The crystal packing is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{I}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds.

Comment

Numerous flexible or rigid N -heterocyclic carbene precursors have been synthesized and studied. They attract considerable attention because of their diverse coordination capabilities and the important catalytic properties of their metal complexes (Herrmann, 2002; Herrmann \& Kocher, 1997). We report here the crystal structure of the title compound, (I).

(I)

Bond lengths and angles in (I) are normal (Table 1). The naphthalene ring system is planar, with a maximum deviation of 0.022 (4) \AA for C9. The dihedral angle between the $\mathrm{N} 1 / \mathrm{C} 12 /$ $\mathrm{N} 2 / \mathrm{C} 13 / \mathrm{C} 14$ and $\mathrm{C} 1-\mathrm{C} 10$ planes is $76.6(1)^{\circ}$ and that between the $\mathrm{N} 3 / \mathrm{C} 17 / \mathrm{N} 4 / \mathrm{C} 18 / \mathrm{C} 19$ and $\mathrm{C} 1-\mathrm{C} 10$ planes is $74.5(1)^{\circ}$. The dihedral angle between the two imidazolium rings is $6.6(4)^{\circ}$. In the crystal structure, the water molecule and iodide ions are involved in $\mathrm{O}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds (Fig. 1). In addition, the crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds.

Experimental

Compound (I) was synthesized by the reaction of 1,4-bis(imidazolymethyl)naphthalene with iodomethane in dichloromethane at room temperature, according to the reported procedure of Baker et al. (2001). Yellow single crystals of (I) were obtained by recrystallization from methanol and diethyl ether.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4}{ }^{2+} \cdot 2 \mathrm{I}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$	$Z=2$
$M_{r}=590.23$	$D_{x}=1.758 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $\mathrm{K} \mathrm{\alpha}$ radiation
$a=8.563(3) \AA$	Cell parameters from 18
$b=9.572(3) \AA$	reflections
$c=14.684(6) \AA$	$\theta=4.4-7.4^{\circ}$
$\alpha=102.97(3)^{\circ}$	$\mu=2.84 \mathrm{~mm}^{-1}$
$\beta=103.66(3)^{\circ}$	$T=292(2) \mathrm{K}$
$\gamma=98.24(3)^{\circ}$	Block, yellow
$V=1114.9(7) \AA^{\circ}$	$0.25 \times 0.15 \times 0.08 \mathrm{~mm}$

Received 21 October 2005 Accepted 31 October 2005 Online 5 November 2005

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.583, T_{\text {max }}=0.797$
3927 measured reflections
3900 independent reflections
2850 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.083$
$S=1.00$
3900 reflections
254 parameters

$$
\begin{aligned}
& R_{\text {int }}=0.016 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-10 \rightarrow 9 \\
& k=-2 \rightarrow 11 \\
& l=-17 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 300 \text { reflections } \\
& \quad \text { intensity decay: } 2.1 \%
\end{aligned}
$$

H -atom parameters treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.05 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\max }=0.48$ e \AA^{-3}
$\Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}$
Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 12$	$1.324(5)$	$\mathrm{N} 3-\mathrm{C} 19$	$1.366(5)$
$\mathrm{N} 1-\mathrm{C} 14$	$1.381(6)$	$\mathrm{N} 3-\mathrm{C} 16$	$1.483(5)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.462(5)$	$\mathrm{N} 4-\mathrm{C} 17$	$1.325(5)$
$\mathrm{N} 2-\mathrm{C} 12$	$1.313(5)$	$\mathrm{N} 4-\mathrm{C} 18$	$1.370(5)$
$\mathrm{N} 2-\mathrm{C} 13$	$1.361(6)$	$\mathrm{N} 4-\mathrm{C} 20$	$1.468(6)$
$\mathrm{N} 2-\mathrm{C} 15$	$1.475(5)$	$\mathrm{C} 4-\mathrm{C} 16$	$1.510(6)$
$\mathrm{N} 3-\mathrm{C} 17$	$1.314(5)$		
$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 1$	$114.7(3)$	$\mathrm{N} 3-\mathrm{C} 16-\mathrm{C} 4$	$111.6(3)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1W-H1W \cdots I2	$0.85(4)$	$2.76(4)$	$3.578(6)$	$164(6)$
O1 $W-\mathrm{H} 2 W \cdots \mathrm{I} 1$	$0.85(9)$	$2.87(9)$	$3.649(7)$	$154(6)$
C17-H17 \cdots I2	2.90	$3.799(5)$	162	
C18-H18 $\mathrm{O}^{1} W^{\text {ii }}$	0.93	0.93	2.52	$3.327(8)$
C19-H19 $\cdots \mathrm{I}^{\text {ii }}$	0.93	2.93	$3.830(4)$	163

Symmetry codes: (i) $-x+1,-y+2,-z$; (ii) $-x+1,-y+1,-z$.

The H atoms of the water molecule were located in a difference Fourier map and refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of 0.84 (1) and 1.37 (2) \AA, respectively. All other H atoms were placed in calculated positions $[\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$], and included in the final cycles of refinement using a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}($ carrier atom $)$.

Data collection: DIFRAC (Gabe \& White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s)

Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids and the atomic numbering. Dashed lines indicate hydrogen bonds.
used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia,1997); software used to prepare material for publication: SHELXL97.

The authors thank the Centre for Test and Analysis, Sichuan University, for financial support.

References

Baker, M. V., Skelton, B. W., White, A. H. \& Williams, C. C. (2001). J. Chem. Soc. Dalton Trans. 2, 111-120.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Gabe, E. J. \& White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh meeting. Abstract PA104.
Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.
Herrmann, W. A. \& Kocher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162 2187.

North, A. C. T., Philips, D. C. \& Mathews, F. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

